We studied the potential of the humus layer of the Norway spruce stands to supply beneficial rhizobacteria to birch (Betula pendula), alder (Alnus incana) and fescue grass (Festuca rubra), representatives of pioneer vegetation after clear-cutting of the coniferous forest. Axenically grown seedlings of these species were inoculated with the acid spruce humus, pH 3.7^5.3. Actinorhizal propagules, capable of nodulating alder, were present in high density (10 3 g 31 ) in humus of long-term limed plots, whereas plots with nitrogen fertilization contained almost none (910 g 31 ). The genera most frequently found in the humus were Bacillus, Paenibacillus, Arthrobacter, Nocardia, Rhodococcus and Pseudomonas, independently of prior liming or fertilization of the plots. The taxa found in the seedling roots differed from that in humus by the prevalence of the Gram-negative genera Pseudomonas, Alcaligenes and Comamonas. Enrichment cultures of the roots on nitrogen-free media yielded Paenibacillus and Rhodococcus species. Nitrogen-fixing R. erythropolis and a novel Paenibacillus, closest by full sequence of 16S rDNA to P. durus, represented new classes of nitrogen-fixing rhizosphere bacteria. In addition, nitrogen-fixing R. fascians was found in the humus. The rhizoflora and humus contained high proportions of bacteria antagonistic towards plant pathogenic Rhizoctonia sp., Botrytis cinerea and Fusarium culmorum. The antagonistic isolates also commonly produced siderophores and/or cell wall degrading enzymes. ß