AbstractIn this study, the root exudates of wetland plants, Pistia stratiotes, black algae, and Cyperus alternifolius, exposed to six phosphorus concentration gradients (0, 0.2, 1, 5, 10, and 20 mg/L) were characterized. The experimental seedlings were cultivated in Hoagland solutions, which were then extracted, decompressed, and concentrated with CH2Cl2; subsequently, a gas chromatography-mass spectrometry (GC-MS) analysis was performed to study the root exudates effects under different phosphorus concentrations. Results showed the existence of several organic compounds, such as alkanes, esters, alcohols, amines, benzene, and acids (phthalic acid, cycloheptasiloxane, benzoic acid, and cyclopentasiloxane) in the root exudates of the wetland plants. The relative contents of phthalate, benzene dicarboxylic acid, and cyclohexasiloxane in the root exudates first increased, and then decreased, with the change in phosphorus concentration. The relative contents of three compounds in Pistia were the highest at 1 mg/L of phosphorus, and the lowest relative contents of phthalic acid and benzene dicarboxylic acid were observed at 20 mg/L of phosphorus. However, the relative content of cyclohexasiloxane was the lowest in the absence of P stress. In black algae, the relative contents of the three compounds were 36.66, 16.24, and 14.61%, respectively. The relative content of cyclohexasiloxane in the black algae first decreased and then increased, with its lowest relative content occurring at 5 mg/L of phosphorus and the highest at 10 mg/L of phosphorus. In Cyperus alternifolius, the highest relative concentrations of the four compounds: phthalic acid, dimethyl phthalate, octadecane, and diphenyl sulfone in Cyperus were observed at 5 mg/L phosphorus and the lowest at 10 mg/L phosphorus.