Proteins of the 14-3-3 and Rho-GTPase families are functionally conserved eukaryotic proteins that participate in many important cellular processes such as signal transduction, cell cycle regulation, malignant transformation, stress response, and apoptosis. However, the exact role(s) of these proteins in these processes is not entirely understood. Using the fungal maize pathogen, Ustilago maydis, we were able to demonstrate a functional connection between Pdc1 and Rho1, the U. maydis homologues of 14-3-3 and Rho1, respectively. Our experiments suggest that Pdc1 regulates viability, cytokinesis, chromosome condensation, and vacuole formation. Similarly, U. maydis Rho1 is also involved in these three essential processes and exerts an additional function during mating and filamentation. Intriguingly, yeast two-hybrid and epistasis experiments suggest that both Pdc1 and Rho1 could be constituents of the same regulatory cascade(s) controlling cell growth and filamentation in U. maydis. Overexpression of rho1 ameliorated the defects of cells depleted for Pdc1. Furthermore, we found that another small G protein, Rac1, was a suppressor of lethality for both Pdc1 and Rho1. In addition, deletion of cla4, encoding a Rac1 effector kinase, could also rescue cells with Pdc1 depleted. Inferring from these data, we propose a model for Rho1 and Pdc1 functions in U. maydis.Morphological switching is a unique attribute of all dimorphic fungi, which alternate between budding and filamentous growth. In some cases, as with mating, this is a prerequisite for genetic diversity for this subfamily of fungi. In addition, many dimorphic fungal pathogens rely on this ability in order to effectively invade their host. In general, the transition between these alternate life forms means a complete turnover of cellular and proteomic components, which often involves cell cycle arrest and/or cytoskeletal rearrangement. Although the cellular proteomes associated with these two processes share many components, there are both temporal and spatial regulations that are manifested during the transitional phase (4).Temporal-spatial regulation of the proteome during the dimorphic transition requires cooperation and synchronized communication among different regulatory pathways. Two highly intricate, yet well-established, signaling cascades that regulate fungal morphogenesis are the mitogen-activated protein kinase (MAPK) (34, 46) and protein kinase A pathways (11). These signaling cascades detect and perpetuate extracellular stimuli, e.g., pheromones and nutrients, which lead to phase transitions in dimorphic fungi. Although the mechanisms are not as fully understood, members of two highly conserved families of proteins, Rho/Rac GTPases and 14-3-3 proteins, have also been shown to control filamentation. Constituents of the Rho/Rac protein family have been shown to regulate actin organization (26,35,36), cytokinesis (3, 49, 52), cell integrity (42, 56), pathogenicity (29), signal transduction (22,44,56), and cell migration (8). Their activity is dependent...