The family of C3-like exoenzymes comprises seven bacterial ADP-ribosyltransferases of different origin. The common hallmark of these exoenzymes is the selective N-ADP-ribosylation of the low molecular mass GTPbinding proteins RhoA, B, and C and inhibition of signal pathways controlled by Rho GTPases. Therefore, C3-like exoenzymes were applied as pharmacological tools for analyses of cellular functions of Rho protein in numerous studies. Recent structural and functional analyses of C3-like exoenzymes provide detailed information on the molecular mechanisms and functional consequences of ADP-ribosylation catalyzed by these toxins. More recently additional non-enzymatic actions of C3-like ADP-ribosyltransferases have been identified showing that C3 transferases from Clostridium botulinum and Clostridium limosum form a GDI-like complex with the Ras-like low molecular mass GTPase Ral without ADP-ribosylation. These results add novel information on the molecular mode of action(s) of C3-like exoenzymes and are discussed in this review.