Parkinson’s disease (PD), as a widespread neurodegenerative disorder, significantly impacts patients’ quality of life. Its primary symptoms include motor disturbances, tremor, muscle stiffness, and balance disorders. In recent years, with the advancement of research, the concept of the bone–brain axis has gradually become a focal point in the field of PD research. The bone–brain axis refers to the interactions and connections between the skeletal system and the central nervous system (CNS), playing a crucial role in the pathogenesis and pathological processes of PD. The purpose of this review is to comprehensively and deeply explore the bone–brain axis in PD, covering various aspects such as the complex relationship between bone metabolism and PD, the key roles of neurotransmitters and hormones in the bone–brain axis, the role of inflammation and immunity, microRNA (miRNA) functional regulation, and potential therapeutic strategies. Through a comprehensive analysis and in-depth discussion of numerous research findings, this review aims to provide a solid theoretical foundation for a deeper understanding of the pathogenesis of PD and to offer strong support for the development of new treatment methods.