Rhodium‐Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of 1,3‐Dipolar Nitrones
Liren Xu,
Tilong Yang,
Hao Sun
et al.
Abstract:Owing to their distinctive 1,3‐dipolar structure, the catalytic asymmetric hydrogenation of nitrones to hydroxylamines has been a formidable and longstanding challenge, characterized by intricate enantiocontrol and susceptibility to N‐O bond cleavage. In this study, the asymmetric hydrogenation and transfer hydrogenation of nitrones were accomplished with a tethered TsDPEN‐derived cyclopentadienyl rhodium(III) catalyst (TsDPEN: p‐toluenesulfonyl‐1,2‐diphenylethylene‐1,2‐diamine), the reaction proceeds via a no… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.