Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the hemipteran Rhodnius prolixus, successful post-prandial diuresis is accomplished through the synergistic actions of the peptidergic diuretic hormone RhoprCRF/DH and the biogenic amine 5-hydroxytryptamine (5-HT), and by an antidiuretic hormone RhoprCAPA-2 that terminates diuresis by inhibiting this synergy. Lateral neurosecretory cells (NSCs) in the mesothoracic ganglionic mass release RhoprCRF/DH, while midline NSCs release RhoprCAPA-2 during blood feeding. These NSCs co-express GPA2/GPB5, a conserved glycoprotein hormone involved in various physiological processes across bilaterians. This study investigates the influence of GPA2/GPB5 signaling on Malpighian tubule (MT) fluid secretion in R. prolixus. GPB5-like immunoreactivity in lateral and midline NSCs decreases following a blood meal, suggesting release and a role in diuresis. Downregulating the GPA2/GPB5 receptor LGR1 via RNA interference results in an increased basal fluid secretion rate in MTs, which is inhibited by the antidiuretic hormone RhoprCAPA-2. dsLGR1 treatment reduces the effects of RhoprCRF/DH and 5-HT on MT secretion and eliminates their synergism. RT-qPCR reveals that the transcript expression of the diuretic and antidiuretic hormone receptors are decreased in MTs of dsLGR1 injected insects, indicating that GPA2/GPB5 influences the expression of these other receptor transcripts. Downregulating LGR1 results in a smaller blood meal size and disrupts the normal time-course of diuresis. As LGR1 is the most abundantly expressed G protein-coupled receptor transcript in R. prolixus MTs, our results suggest that GPA2/GPB5 signaling has a critical role in regulating the timing and success of water retention in the unfed state, and in the complex processes associated with feeding and diuresis in R. prolixus.
In the hemipteran Rhodnius prolixus, successful post-prandial diuresis is accomplished through the synergistic actions of the peptidergic diuretic hormone RhoprCRF/DH and the biogenic amine 5-hydroxytryptamine (5-HT), and by an antidiuretic hormone RhoprCAPA-2 that terminates diuresis by inhibiting this synergy. Lateral neurosecretory cells (NSCs) in the mesothoracic ganglionic mass release RhoprCRF/DH, while midline NSCs release RhoprCAPA-2 during blood feeding. These NSCs co-express GPA2/GPB5, a conserved glycoprotein hormone involved in various physiological processes across bilaterians. This study investigates the influence of GPA2/GPB5 signaling on Malpighian tubule (MT) fluid secretion in R. prolixus. GPB5-like immunoreactivity in lateral and midline NSCs decreases following a blood meal, suggesting release and a role in diuresis. Downregulating the GPA2/GPB5 receptor LGR1 via RNA interference results in an increased basal fluid secretion rate in MTs, which is inhibited by the antidiuretic hormone RhoprCAPA-2. dsLGR1 treatment reduces the effects of RhoprCRF/DH and 5-HT on MT secretion and eliminates their synergism. RT-qPCR reveals that the transcript expression of the diuretic and antidiuretic hormone receptors are decreased in MTs of dsLGR1 injected insects, indicating that GPA2/GPB5 influences the expression of these other receptor transcripts. Downregulating LGR1 results in a smaller blood meal size and disrupts the normal time-course of diuresis. As LGR1 is the most abundantly expressed G protein-coupled receptor transcript in R. prolixus MTs, our results suggest that GPA2/GPB5 signaling has a critical role in regulating the timing and success of water retention in the unfed state, and in the complex processes associated with feeding and diuresis in R. prolixus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.