Shifts in spatial attention are associated with variations in alpha-band (α, 8–14 Hz) activity, specifically in inter-hemispheric imbalance. The underlying mechanism is attributed to local α-synchronisation, which regulates local inhibition of neural excitability, and fronto-parietal synchronisation reflecting long-range communication. The direction-specific nature of this neural correlate brings forward its potential as a control signal in brain-computer interfaces (BCI). In the present study, we explored whether long-range α-synchronisation presents lateralised patterns dependent on voluntary attention orienting and whether these neural patterns can be picked up at a single-trial level to provide a control signal for active BCI. We collected electroencephalography (EEG) data from a cohort of healthy adults (n = 10) while performing a covert visuospatial attention (CVSA) task. The data shows a lateralised pattern of α-band phase coupling between frontal and parieto-occipital regions after target presentation, replicating previous findings. This pattern, however, was not evident during the cue-to-target orienting interval, the ideal time window for BCI. Furthermore, decoding the direction of attention trial-by-trial from cue-locked synchronisation with support vector machines (SVM) was at chance-level. The present findings suggest EEG may not be capable of detecting long-range α-synchronisation in attentional orienting on a single-trial basis and, thus, highlight the limitations of this metric as a reliable signal for BCI control.SIGNIFICANCE STATEMENTCognitive neuroscience advances should ideally have a real-world impact, with an obvious avenue for transference being BCI applications. The hope is to faithfully translate user-generated brain endogenous states into control signals to actuate devices. A paramount challenge for transfer is to move from group-level, multi-trial average approaches to single-trial level. Here, we evaluated the feasibility of single-trial estimation of phase synchrony across distant brain regions. Although many studies link attention to long-range synchrony modulation, this metric has never been used to control BCI. We present a first attempt of a synchrony-based BCI that, albeit unsuccessful, should help break new ground to map endogenous attention shifts to real-time control of brain-computer actuated systems.