2021
DOI: 10.4310/mrl.2021.v28.n5.a7
|View full text |Cite
|
Sign up to set email alerts
|

Ribbon knots, cabling, and handle decompositions

Abstract: The fusion number of a ribbon knot is the minimal number of 1-handles needed to construct a ribbon disk. The strong homotopy fusion number of a ribbon knot is the minimal number of 2-handles in a handle decomposition of a ribbon disk complement. We demonstrate that these invariants behave completely differently under cabling by showing that the (p, 1)-cable of any ribbon knot with fusion number one has strong homotopy fusion number one and fusion number p. Our main tools are Juhász-Miller-Zemke's bound on fusi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 28 publications
0
0
0
Order By: Relevance