Rice is one of the main staple food in many areas of the world. The quality estimation of rice kernels are crucial in terms of both food safety and socio-economic impact. This was usually carried out by quality inspectors in the past, which may result in both objective and subjective inaccuracies. In this paper, we present an automatic visual quality estimation system of rice kernels, to classify the sampled rice kernels according to their types of flaws, and evaluate their quality via the weight ratios of the perspective kernel types. To compensate for the imbalance of different kernel numbers and classify kernels with multiple flaws accurately, we propose a multi-stage workflow which is able to locate the kernels in the captured image and classify their properties. We define a novel metric to measure the relative weight of each kernel in the image from its area, such that the relative weight of each type of kernels with regard to the all samples can be computed and used as the basis for rice quality estimation. Various experiments are carried out to show that our system is able to output precise results in a contactless way and replace tedious and error-prone manual works.INDEX TERMS Rice defect classification, rice quality estimation, rice weight estimation, vision-based method.