First predicted by Richtmyer in 1960 and experimentally confirmed by Meshkov in 1969, the Richtmyer–Meshkov instability (RMI) is crucial in fields such as physics, astrophysics, inertial confinement fusion and high-energy-density physics. These disciplines often deal with strong shocks moving through condensed materials or high-pressure plasmas that exhibit non-ideal equations of state (EoS), thus requiring theoretical models with realistic fluid EoS for accurate RMI simulations. Approximate formulae for asymptotic growth rates, like those proposed by Richtmyer, are helpful but rely on heuristic prescriptions for compressible materials. These prescriptions can sometimes approximate the RMI growth rate well, but their accuracy remains uncertain without exact solutions, as the fully compressible RMI growth rate is influenced by both vorticity deposited during shock refraction and multiple sonic wave refractions. This study advances previous work by presenting an analytic, fully compressible theory of RMI for reflected shocks with arbitrary EoS. It compares theoretical predictions with heuristic prescriptions using ideal gas, van der Waals gas and three-term constitutive equations for simple metals, the latter being analysed with detailed and simplified ideal-gas-like EoS. We additionally offer an alternative explicit approximate formula for the asymptotic growth rate. The comprehensive model also incorporates the effects of constant-amplitude acoustic waves at the interface, associated with the D'yakov–Kontorovich instability in shocks.