Abstract. Multichannel seismic reflection and gravity data define the structure of Mesozoic ocean crust of the Canary Basin, formed at slow spreading rates. Single and multichannel seismics show a transition from smooth to rough basement topography from Jurassic to Cretaceous crust and a coeval change in crustal structure. Internal reflectivity of the rough basement area comprises upper, upper middle or whole crust cutting discrete dipping reflections. Lower-crustal reflectivity is almost absent and reflections from the crust-mantle transition are short and discontinuous or absent for several kilometers. In contrast, crust in the smooth basement area is characterized by sparse lower crustal events and common reflections from the crust-mantle boundary. The crustal structure of fracture zones in the rough basement area is associated with depressions in the basement top and in most cases with thin crust. In the smooth basement area, fracture zones exhibit neither a clear topographic expression nor crustal thinning. We interpret these characteristics as indicative of an increase in extensional tectonic activity and decrease in magmatic activity at the spreading ridge associated with a general decrease of spreading rate from Jurassic to Cretaceous times. In addition, the crust imaged across the path of the Cape Verde Hot Spot in the Canary Basin exhibits a widespread lower crustal reflectivity, very smooth topography and apparently thick crust. Our data document significant changes in the structure of crust formed at slow spreading rates which we attribute to thermal changes in the lithosphere due either to variations in spreading rate or to the presence of a hot spot beneath the Mesozoic Mid-Atlantic Ridge.