Abstract:If G is a group of automorphisms that acts properly discontinuously on a Riemann or Klein surface X, then there exists a unique structure of Riemann or Klein surface on X/G such that the projection π : X → X/G is a morphism. The analogous result is not true when we deal with surfaces with nodes. In this paper we give a new definition of a group that acts properly discontinuously on a surface with nodes in order to obtain a similar theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.