Riemann problem for multiply connected domain in Besov spaces
Nazarbay Bliev,
Nurlan Yerkinbayev
Abstract:In this paper, we obtain conditions of the solvability of the Riemann boundary value problem for sectionally analytic functions in multiply connected domains in Besov spaces embedded into the class of continuous functions. We indicate a new class of Cauchy-type integrals, which are continuous on a closed domain with continuous (not Hölder) density in terms of Besov spaces, and for which the Sokhotski–Plemelj formulas are valid.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.