Abstract:Riesz potentials (also called Riesz fractional derivatives) are defined as fractional powers of Laplacian. They are traditionally used for studying existence and uniqueness for equations of the Korteweg-de Vries type (KdV-type henceforth). Zero mean properties are established for Riesz potentials of solutions of KdV-type equations, D α x u(x, t), for α ∈ (0, 3/2). As an important example Riesz fractional derivatives and their Hilbert transforms are computed for the well-known soliton solution of KdV. Obtained … Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.