Clustered regularly interspaced short palindromic repeats (CRISPR) are prokaryotic adaptive immune systems regularly utilized as DNA-editing tools. While
Neisseria gonorrhoeae
does not have an endogenous CRISPR, the commensal species
Neisseria lactamica
encodes a functional Type I-C CRISPR-Cas system. We have established an isopropyl β-d-1-thiogalactopyranoside added (IPTG)-inducible, CRISPR interference (CRISPRi) platform based on the
N. lactamica
Type I-C CRISPR missing the Cas3 nuclease to allow locus-specific transcriptional repression. As proof of principle, we targeted a non-phase-variable version of the
opaD
gene. We show that CRISPRi can downregulate
opaD
gene and protein expression, resulting in bacterial inability to stimulate neutrophil oxidative responses and to bind to an N-terminal fragment of CEACAM1. Importantly, we used CRISPRi to effectively knockdown all the transcripts of all 11
opa
genes using a five-spacer CRISPR array, allowing control of the entire phase-variable
opa
family in strain FA1090. We also report that repression is reversible following IPTG removal. Finally, we showed that the Type I-C CRISPRi system can conditionally reduce the expression of two essential genes. This CRISPRi system will allow the interrogation of every Gc gene, essential and non-essential, to study physiology and pathogenesis and aid in antimicrobial development.
IMPORTANCE
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have proven instrumental in genetically manipulating many eukaryotic and prokaryotic organisms. Despite its usefulness, a CRISPR system had yet to be developed for use in
Neisseria gonorrhoeae
(Gc), a bacterium that is the main etiological agent of gonorrhea infection. Here, we developed a programmable and IPTG-inducible Type I-C CRISPR interference (CRISPRi) system derived from the commensal species
Neisseria lactamica
as a gene repression system in Gc. As opposed to generating genetic knockouts, the Type I-C CRISPRi system allows us to block transcription of specific genes without generating deletions in the DNA. We explored the properties of this system and found that a minimal spacer array is sufficient for gene repression while also facilitating efficient spacer reprogramming. Importantly, we also show that we can use CRISPRi to knockdown genes that are essential to Gc that cannot normally be knocked out under laboratory settings. Gc encodes ~800 essential genes, many of which have no predicted function. We predict that this Type I-C CRISPRi system can be used to help categorize gene functions and perhaps contribute to the development of novel therapeutics for gonorrhea.