The role of cap structures in the translation of brain mRNA was examined by measuring protein biosynthesis in vitro in wheat germ and reticulocyte systems programmed by mRNA that was either untreated or oxidized by periodate or from which 5'-terminal 7-methylguanosine (m7G) was removed by oxidation and beta-elimination. In another series of reactions, amino acid incorporation into polypeptides was measured in the absence and in the presence of varying concentrations of the cap analogue 7-methylguanosine 5'-triphosphate (pppm7G). The results indicated that any of the above treatments interfered with brain mRNA translation, the degree of inhibition depending on the translation system used, the concentration of mRNA, and the source of initiation factors. Homologous brain initiation factors were superior to reticulocyte factors in providing a partial relief from inhibition of translation caused by these treatments. It was also found that synthesis of the brain-specific protein S-100 was inhibited by beta-elimination of mRNA, by pppm7G, or by the presence of capped globin mRNA, indicating that the mRNA for this protein was probably capped.