Abstract:When Γ X is a convex-cocompact action of a discrete group on a non-compact rank-one symmetric space X, there is a natural lower bound for the Hausdorff dimension of the limit set Λ(Γ) ⊂ ∂X, given by the Ahlfors regular conformal dimension of ∂Γ. We show that equality is achieved precisely when Γ stabilizes an isometric copy of some non-compact rank-one symmetric space in X on which it acts with compact quotient. This generalizes a theorem of Bonk-Kleiner, who proved it in the case that X is real hyperbolic.To … Show more
“…In other words, to admit a bi-Lipschitz embedding into a Euclidean space, a PI space must itself be infinitesimally Euclidean. (Extensions of this are known, see [16,Theorem 14.2] and more recent results in [17,18,19,21,23,53]. )…”
We study metric measure spaces that admit "thick" families of rectifiable curves or curve fragments, in the form of Alberti representations or curve families of positive modulus. We show that such spaces cannot be bi-Lipschitz embedded into any Euclidean space unless they admit some "infinitesimal splitting": their tangent spaces are bi-Lipschitz equivalent to product spaces of the form Z×R k for some k ⩾ 1. We also provide applications to conformal dimension and give new proofs of some previously known non-embedding results.Résumé. -On étudie des espaces métriques mesurés qui possèdent des familles "épaisses" de courbes rectifiables ou de fragments de courbes, sous la forme de représentations d'Alberti ou de familles de courbes de module strictement positif. On montre que de tels espaces ne possèdent pas de plongement bi-lipschitzien dans un espace euclidien, sauf s'ils admettent une "décomposition infinitésimale": leurs espaces tangents sont bi-lipschitz équivalents à des produits d'espaces de la forme Z × R k pour un certain k ⩾ 1. On donne aussi des applications à la dimension conforme et de nouvelles preuves de certains résultats de non plongement déjà connus.
“…In other words, to admit a bi-Lipschitz embedding into a Euclidean space, a PI space must itself be infinitesimally Euclidean. (Extensions of this are known, see [16,Theorem 14.2] and more recent results in [17,18,19,21,23,53]. )…”
We study metric measure spaces that admit "thick" families of rectifiable curves or curve fragments, in the form of Alberti representations or curve families of positive modulus. We show that such spaces cannot be bi-Lipschitz embedded into any Euclidean space unless they admit some "infinitesimal splitting": their tangent spaces are bi-Lipschitz equivalent to product spaces of the form Z×R k for some k ⩾ 1. We also provide applications to conformal dimension and give new proofs of some previously known non-embedding results.Résumé. -On étudie des espaces métriques mesurés qui possèdent des familles "épaisses" de courbes rectifiables ou de fragments de courbes, sous la forme de représentations d'Alberti ou de familles de courbes de module strictement positif. On montre que de tels espaces ne possèdent pas de plongement bi-lipschitzien dans un espace euclidien, sauf s'ils admettent une "décomposition infinitésimale": leurs espaces tangents sont bi-lipschitz équivalents à des produits d'espaces de la forme Z × R k pour un certain k ⩾ 1. On donne aussi des applications à la dimension conforme et de nouvelles preuves de certains résultats de non plongement déjà connus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.