It is well-known that a standard lubrication analysis of the equations of motion in thin liquid films coating the inside surface of a rotating horizontal cylinder leads, under creeping-flow conditions, to a cubic equation for the film thickness profile which, depending on the fluid properties of the liquid, the speed of rotation and the fill fraction F , has either (a) a continuous, symmetric (homogeneous) solution; (b) a solution containing a shock; or (c) no solution below a certain speed. By means of an asymptotic analysis of the recently proposed "modified lubrication equation" (MLE) [M. Tirumkudulu and A. Acrivos, Phys. Fluid 13 (2000) 14-19], it is shown that the solutions of the cubic equation referred to above correctly describe the film-thickness profiles although, when shocks are involved, under exceedingly restrictive conditions, typically F ∼ 10 −3 or less. In addition, using the MLE, the linear stability of these film profiles is investigated and it is shown that: the "homogeneous" profiles are neutrally stable if surface-tension effects are neglected but, if the latter are retained, the films are asymptotically stable to two-dimensional disturbances and unstable to axial disturbances; on the other hand, the non-homogeneous profiles are always asymptotically stable, thus confirming results given earlier [T.B. Benjamin, W.G. Pritchard, and S.J. Tavener (preprint, 1993)] on the basis of the standard lubrication analysis.