Catalytic olefin metathesis based on the second-and third-row transition metals has become one of the most powerful transformations in modern organic chemistry. The shift to firstrow metals to produce fine and commodity chemicals would be an important achievement to complement existing methods with inexpensive and greener alternatives. In addition, those systems can offer unusual reactivity based on the unique electronic structure of the base metals. In this Minireview, we summarize the progress of the development of alkylidenes and metallacycles of first-row transition metals from scandium to nickel capable of performing cycloaddition and cycloreversion steps, crucial reactions in olefin metathesis. In addition, we will discuss systems capable of performing olefin metathesis; however, the nature of active species is not yet known.