There are cryptographic systems that are secure against attacks by both quantum and classical computers. Some of these systems are based on the Binary Ring-LWE problem which is presumed to be difficult to solve even on a quantum computer. This problem is considered secure for IoT (Internet of things) devices with limited resources. In Binary Ring-LWE, a polynomial a is selected randomly and a polynomial b is calculated as b = a.s + e where the secret s and the noise e are polynomials with binary coefficients. The polynomials b and a are public and the secret s is hard to find. However, there are Side Channel Attacks that can be applied to retrieve some coefficients (random known bits) of s and e. In this work, we analyze that the secret s can be retrieved successfully having at least 50% of random known bits of s and e.