Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Ring Rolling is a near-net manufacturing process with some measurable dimensional inaccuracies in its products. This fact is exaggerated even more under the scope of high-precision manufacturing, where these imprecisions render such products unfitting for the strict dimensional requirements of high-precision applications (e.g., bearings, casings for turbojets, etc.). In order to remedy some of the dimensional inaccuracies of Ring Rolling, the novel approach of Reverse Ring Rolling is proposed and investigated in the current analysis. The conducted research was based on a numerical simulation of a flat Ring Rolling process, previously presented by the authors. Since the final dimensions of the ring from the authors’ previous work diverged from those initially expected, the simulation of a subsequent Reverse Ring Rolling process was performed to reach the target dimensions. The calculated deformational results revealed a great agreement in at least two of the three crucial dimensions. Additionally, the evaluation of the calculated stress, strain, temperature and load results revealed key aspects of the mechanisms that occur during the proposed process. Overall, it was concluded that Reverse Ring Rolling can effectively function as a corrective process, which can increase the dimensional accuracy of a seamless ring product with little additional post-processing and cost.
Ring Rolling is a near-net manufacturing process with some measurable dimensional inaccuracies in its products. This fact is exaggerated even more under the scope of high-precision manufacturing, where these imprecisions render such products unfitting for the strict dimensional requirements of high-precision applications (e.g., bearings, casings for turbojets, etc.). In order to remedy some of the dimensional inaccuracies of Ring Rolling, the novel approach of Reverse Ring Rolling is proposed and investigated in the current analysis. The conducted research was based on a numerical simulation of a flat Ring Rolling process, previously presented by the authors. Since the final dimensions of the ring from the authors’ previous work diverged from those initially expected, the simulation of a subsequent Reverse Ring Rolling process was performed to reach the target dimensions. The calculated deformational results revealed a great agreement in at least two of the three crucial dimensions. Additionally, the evaluation of the calculated stress, strain, temperature and load results revealed key aspects of the mechanisms that occur during the proposed process. Overall, it was concluded that Reverse Ring Rolling can effectively function as a corrective process, which can increase the dimensional accuracy of a seamless ring product with little additional post-processing and cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.