2019
DOI: 10.1007/s13369-018-03695-5
|View full text |Cite
|
Sign up to set email alerts
|

Ripeness Classification of Bananas Using an Artificial Neural Network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
58
0
8

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 131 publications
(66 citation statements)
references
References 20 publications
0
58
0
8
Order By: Relevance
“…Our second dataset, consisting of real images, is a collection drawn from three sources. First, images were taken from the dataset [38] originally used for ripeness classification networks. Second, the "Top Indian Fruits" dataset contains many images of bananas in various states of ripeness and health [39]; from this, we selected only the examples of healthy bananas and discarded the associated per-image ripeness and quality labels.…”
Section: Training Datasetmentioning
confidence: 99%
“…Our second dataset, consisting of real images, is a collection drawn from three sources. First, images were taken from the dataset [38] originally used for ripeness classification networks. Second, the "Top Indian Fruits" dataset contains many images of bananas in various states of ripeness and health [39]; from this, we selected only the examples of healthy bananas and discarded the associated per-image ripeness and quality labels.…”
Section: Training Datasetmentioning
confidence: 99%
“…Melalui confusion matrix dapat dihitung nilai akurasi, sensitivitas, presisi, spesifisitas, dan nilai prediksi negatif yang menggambar kinerja jaringan saraf tiruan. Nilai akurasi, sensitivitas, presisi, spesifisitas, dan nilai prediksi negatif dihitung dengan Persamaan 2 -6 (Mazen & Nashat, 2019).…”
Section: Perancangan Jaringan Saraf Tiruanunclassified
“…Metode Computer Vision (CV) yang mengandalkan perekaman citra TBS oleh kamera digital dan program pengolahan citra telah banyak digunakan karena lebih sederhana. Metode ini telah digunakan untuk mengestimasi tingkat kematangan TBS kelapa sawit antara lain mengunakan color computer vision [21], mengunakan metode fluorosensi [22], pengolahan data dan program klasifikasi mengunakan jaringan syaraf tiruan [23]. Pengunaan metode pencitraan hiperspektral untuk TBS kelapa sawit juga telah mulai dilakukan mengunakan spectrograph specim beserta mengevaluasi kadar minyak buah [24].…”
Section: Pendahuluanunclassified