An experimental study was conducted to determine the influence of length, width, and protrusion of noncontinuous riprap protections on shear failure conditions. The incipient motion of particles as a failure criterion and the reference transport method as the threshold of motion were used. In each test, riprap transport rates were measured at different time intervals using a sediment trap placed immediately downstream from the test reach so that time dependence could be well described. Results reveal that incipient motion conditions of transverse ͑cross-sectional͒ protections are strongly influenced by both the protrusion and length of bed protection, which indicates that stability significantly increases as protection length increases and decreases as protrusion increases. In the case of longitudinal protections, almost the same failure conditions were found as in the case of continuous protection. Furthermore, these conditions are unrelated to the width of the protection. A coefficient to correct design formulas obtained by other authors is proposed to take into account the effect of the geometry of transverse protections on their stability.