Deep excavation construction safety has become a challenging and crucial aspect of modern infrastructure engineering, and its risk assessment is frequently carried out using the Fuzzy Analytic Hierarchy Process (FAHP). However, when using FAHP to evaluate the risks of deep excavation construction, the results of the weightings obtained through subjective weighting are heavily influenced by the subjective factors of the evaluators. In addition, using linear operators to calculate the risk level can easily cause a weakening effect on the influence of prominent risk factors, resulting in poor rationality of the evaluation results. To address these problems, this paper constructs a deep excavation construction risk evaluation model based on combined weighting and nonlinear FAHP. The WBS-RBS method is used to guide the construction of the risk evaluation index system for deep excavation construction. The combined weighting values of subjective and objective weightings are calculated through the game theory combined weighting method. The fuzzy relation matrix is constructed using the membership degree vector obtained from the expert evaluation method. Nonlinear operators are introduced for comprehensive calculation. According to the maximum membership degree principle, the final risk level of the excavation construction is obtained. The newly constructed model is applied to the risk analysis of the deep excavation construction of the Rongmin Science and Innovation Park project in Xi’an. The evaluation result for the excavation construction risk is N= [0.3125, 0.3229, 0.1939, 0.0854, 0.0854], and according to the maximum membership degree principle, the risk level of the excavation is classified as Level 2, which is a relatively low risk. Based on the deep excavation construction of the Rongmin Science and Innovation Park project, this paper discusses the differences between the new model and the traditional FAHP evaluation method, further verifies the reliability of the new model, optimizes the construction plan based on the evaluation results, avoids risks, and determines its guiding significance.