Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence 2019
DOI: 10.24963/ijcai.2019/807
|View full text |Cite
|
Sign up to set email alerts
|

Risk Assessment for Networked-guarantee Loans Using High-order Graph Attention Representation

Abstract: Assessing and predicting the default risk of networked-guarantee loans is critical for the commercial banks and financial regulatory authorities. The guarantee relationships between the loan companies are usually modeled as directed networks. Learning the informative low-dimensional representation of the networks is important for the default risk prediction of loan companies, even for the assessment of systematic financial risk level. In this paper, we propose a high-order graph attention representation method… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
17
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2
1

Relationship

3
5

Authors

Journals

citations
Cited by 42 publications
(19 citation statements)
references
References 10 publications
0
17
0
2
Order By: Relevance
“…Meng 等 [24] 论证了企业所处节 点的 Kshell 散度和企业在担保网络中的违约率存在相关性. Cheng 等 [7] 进一步探索了使用网络表示 学习方法在个体企业风险评估中的作用, 表明了网络特征的重要性. 现有针对担保网络的信贷风险评 估主要针对网络中的个体节点进行预测, 本文从风险传播的传染路径的角度入手, 探索对担保网络的 系统性风险进行评估和分析, 为风险监控提供全局的数据和方法支撑.…”
Section: 金融网络和风险评估unclassified
See 1 more Smart Citation
“…Meng 等 [24] 论证了企业所处节 点的 Kshell 散度和企业在担保网络中的违约率存在相关性. Cheng 等 [7] 进一步探索了使用网络表示 学习方法在个体企业风险评估中的作用, 表明了网络特征的重要性. 现有针对担保网络的信贷风险评 估主要针对网络中的个体节点进行预测, 本文从风险传播的传染路径的角度入手, 探索对担保网络的 系统性风险进行评估和分析, 为风险监控提供全局的数据和方法支撑.…”
Section: 金融网络和风险评估unclassified
“…综上, 总体风险评估网络的完整代价函数表示为 [29] 、长短时记忆 循环神经网络 (long short term memory, LSTM)、 快速图卷积神经网络 (simplifying graph convolutional networks, SGC) [30] 、图注意力机制模型 (graph attention network, GAT) [6] 和高阶图注意力网络 (highorder graph attention representation, HGAR) [7] . 其中对于个体风险评估的方法, 我们使用算术平均聚 合将其扩展至路径的风险评估任务中.…”
Section: 本文方法unclassified
“…Attentional Convolution Neural Network Many recent works have shown the benefit of combining an attention mechanism in convolutional neural networks for a wide range of prediction tasks (Allamanis, Peng, and Sutton 2016;Vaswani et al 2017), such as depth estimation (Xu et al 2018), default prediction (Cheng et al 2019a) or language understanding (Shen et al 2018). For instance, pervasive attention are employed on 2D convolutional neural networks for sequence-to-sequence prediction (Elbayad, Besacier, and Verbeek 2018).…”
Section: Related Workmentioning
confidence: 99%
“…Dan used force-directedgraph visualiza-tion to analyze Bitcoin transaction activity and explore dynamically generated patterns of algorithmic behavior [28]. We are the first to identify and report a visual analytic framework for the risk management problem with networked loans [30,10,9].…”
Section: Related Workmentioning
confidence: 99%
“…Zooming in, there is a significant directed subgraph microstructure. Some prime aspects may be familiar to loan assessment domain experts [30,9,10], but the collective financial properties of those microstructures are unclear and need to be explored.…”
Section: Datamentioning
confidence: 99%