Lead (Pb) continues to be a major toxic metal in the environment. Pb exposure frequently occurs in the presence of other metals, such as arsenic (As) and manganese (Mn). Continued exposure to low levels of these metals may lead to long-term toxic effects due to their accumulation in several organs. Despite the recognition that metals in a mixture may alter each other’s toxicity by affecting deposition, there is dearth of information on their interactions in vivo. In this work, we investigated the effect of As and Mn on Pb tissue deposition, focusing on the kidney, brain and liver.
Wistar rats were treated with 8 doses of each single metal, Pb (5 mg/Kg bw), As (60 mg/L) and Mn mg/Kg bw), or the same doses in a triple metal mixture. Kidney, brain, liver, blood and urine Pb, As and Mn concentrations were determined by graphite furnace atomic absorption spectrophotometry.
Pb kidney, brain and liver concentrations in the metal mixture-treated group were significantly increased compared to the Pb alone treated group, being more pronounced in the kidney (5.4 fold), brain (2.5 fold) and liver (1.6 fold). Urinary excretion of Pb in the metal mixture-treated rats significantly increased compared with the Pb treated group, although blood Pb concentrations were analogous to the Pb treated group.
Co-treatment with As, Mn and Pb alters Pb deposition compared to Pb alone treatment, increasing Pb accumulation predominantly in kidney and brain. Blood Pb levels, unlike urine, do not reflect the increased Pb deposition in the kidney and brain. Taken together, the results suggest that the nephro- and neurotoxicity of “real-life” Pb exposure scenarios should be considered within the context of metal mixture exposures.