Risk Assessment of Subway Station Fire by Using a Bayesian Network-Based Scenario Evolution Model
Xuewei Li,
Jingfeng Yuan,
Limao Zhang
et al.
Abstract:Subway station fires frequently result in massive casualties, economic losses and even social panic due to the massive passenger flow, semiconfined space and limited conditions for escape and smoke emissions. The combination of different states of fire hazard factors increases the uncertainty and complexity of the evolution path of subway station fires and causes difficulty in assessing fire risk. Traditional methods cannot describe the development process of subway station fires, and thus, cannot assess fire … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.