Background
Aedes albopictus and Aedes japonicus, two invasive mosquito species in the United States, are implicated in the transmission of arboviruses. Studies have shown interactions of these two mosquito species with a variety of vertebrate hosts; however, regional differences exist and may influence their contribution to arbovirus transmission.
Methods
We investigated the distribution, abundance, host interactions, and West Nile virus infection prevalence of Ae. albopictus and Ae. japonicus by examining Pennsylvania mosquito and arbovirus surveillance data for the period between 2010 and 2018. Mosquitoes were primarily collected using gravid traps and BG-Sentinel traps, and sources of blood meals were determined by analyzing mitochondrial cytochrome b gene sequences amplified in PCR assays.
Results
A total of 10,878,727 female mosquitoes representing 51 species were collected in Pennsylvania over the 9-year study period, with Ae. albopictus and Ae. japonicus representing 4.06% and 3.02% of all collected mosquitoes, respectively. Aedes albopictus was distributed in 39 counties and Ae. japonicus in all 67 counties, and the abundance of these species increased between 2010 and 2018. Models suggested an increase in the spatial extent of Ae. albopictus during the study period, while that of Ae. japonicus remained unchanged. We found a differential association between the abundance of the two mosquito species and environmental conditions, percent development, and median household income. Of 110 Ae. albopictus and 97 Ae. japonicus blood meals successfully identified to species level, 98% and 100% were derived from mammalian hosts, respectively. Among 12 mammalian species, domestic cats, humans, and white-tailed deer served as the most frequent hosts for the two mosquito species. A limited number of Ae. albopictus acquired blood meals from avian hosts solely or in mixed blood meals. West Nile virus was detected in 31 pools (n = 3582 total number of pools) of Ae. albopictus and 12 pools (n = 977 total pools) of Ae. japonicus.
Conclusions
Extensive distribution, high abundance, and frequent interactions with mammalian hosts suggest potential involvement of Ae. albopictus and Ae. japonicus in the transmission of human arboviruses including Cache Valley, Jamestown Canyon, La Crosse, dengue, chikungunya, and Zika should any of these viruses become prevalent in Pennsylvania. Limited interaction with avian hosts suggests that Ae. albopictus might occasionally be involved in transmission of arboviruses such as West Nile in the region.
Graphical Abstract