Objective
This study investigated the underlying mechanisms of high fracture incidence in the femoral isthmus from a biomechanical perspective.
Methods
We retrospectively analyzed a total of 923 primary total hip arthroplasty (THA) patients and 355 osteoporosis (OP) patients admitted from January 2010 to January 2018. Through a series of screening conditions, 47 patients from each group were selected for inclusion in the study. The datasets on the unaffected side and affected side of the patients with unilateral developmental dysplasia of the hip (uDDH) were respectively classified as the normal group (Group I) and he tDDH group (Group II), and that of patients with osteoporosis were classified as the OP group (Group III). In this study, first, we collected computed tomography (CT) images and measured geometric parameters (inner and outer diameters) of the isthmus. Thereafter, to study biomechanical properties, we established six finite element models and calculated values of von Mises stress for each group with the methods of data conversion and grid processing.
Results
Compared with those of patients in the normal group, the values of the inner and outer diameters of femoral isthmus of patients in the DDH group were significantly lower (P < 0.001), while the inner diameters of patients in the OP group were significantly higher (P < 0.001) and the outer diameters of patients in the OP group showed no significant difference (P> 0.05). The cortical rates of patients in the normal group and the DDH group appeared insignificant (P > 0.05), and those of patients in normal group were significantly higher than those of patients in the OP group (P < 0.001). Moreover, patients in the DDH group showed a higher von Mises stress value than patients in the normal group (P < 0.001), but statistically speaking the values between patients in the OP and normal groups were insignificant (P > 0.05).
Conclusions
The relatively shorter inner and outer diameters of the isthmus in DDH resulted in intensive von Mises stress under the torque of the hip location, and induced a high fracture incidence. However, in patients in the OP group, the geometric morphology exhibited no anatomical variation, and the fracture was not due to the intensity of von Mises stress.