In the context of healthcare technology management (HTM) in Saudi Arabia and the Gulf region, this study addresses a significant gap by exploring both external and internal risk factors affecting HTM performance. Previous studies have primarily focused on modeling or predicting failures in medical devices, mostly examining internal (endogenous) factors that impact device performance and the development of optimal service strategies. However, a comprehensive investigation of external (exogenous) factors has been notably absent. This research introduced a novel hierarchical risk management framework designed to accommodate a broad array of healthcare technologies, not limited to just medical devices. It significantly advanced the field by thoroughly investigating and validating a comprehensive set of 53 risk factors and assessed their influence on HTM. Additionally, this study embraced the perspective of enterprise risk management (ERM) and expanded it to identify and incorporate a wider range of risk factors, offering a more holistic and strategic approach to risk assessment in healthcare technology management. The findings revealed that several previously underexplored external and internal factors significantly impacted HTM performance. Notably, the Fuzzy AHP survey identified “design risk” under facility and environmental risks as the highest risk for HTM in this region. Furthermore, this study revealed that three out of the top ten risks were related to “facility and internal environmental” factors, six were related to technological endogenous factors, and only one was related to managerial factors. This distribution underscores the critical areas for intervention and the need for robust facility and technology management strategies. In conclusion, this research not only fills a critical void by providing a robust framework for healthcare technology risk assessment but also broadens the scope of risk analysis to include a wider array of technologies, thereby enhancing the efficacy and safety of healthcare interventions in the region. Additionally, the proposed hierarchy provides insights into the underlying risk factors for healthcare technology management, with potential applications extending beyond the regional context to a global scale. Moreover, the equation we proposed offers a novel perspective on the key risk factors involved in healthcare technology management, presenting insights with far-reaching implications applicable not only regionally but also on a global level. This framework also supports sustainability goals by encouraging the efficient and responsible utilization and management of healthcare technologies, essential for ensuring the long-term economic and environmental sustainability of medical technology use. This research is of an exploratory nature, with the findings from the Fuzzy AHP analysis being most applicable to the specific geographic regions examined. Additional research is required to validate these results and to confirm the trends observed in various other regions and contexts.