Inherited predisposition to breast cancer is known to be caused by loss-of-function mutations in BRCA1, BRCA2, PALB2, CHEK2, and other genes involved in DNA repair. However, most families severely affected by breast cancer do not harbor mutations in any of these genes. In Finland, founder mutations have been observed in each of these genes, suggesting that the Finnish population may be an excellent resource for the identification of other such genes. To this end, we carried out exome sequencing of constitutional genomic DNA from 24 breast cancer patients from 11 Finnish breast cancer families. From all rare damaging variants, 22 variants in 21 DNA repair genes were genotyped in 3,166 breast cancer patients, 569 ovarian cancer patients, and 2,090 controls, all from the Helsinki or Tampere regions of Finland. In Fanconi anemia complementation gene M (FANCM), nonsense mutation c.5101C>T (p.Q1701X) was significantly more frequent among breast cancer patients than among controls [odds ratio (OR) = 1.86, 95% CI = 1.26-2.75; P = 0.0018], with particular enrichment among patients with triplenegative breast cancer (TNBC; OR = 3.56, 95% CI = 1.81-6.98, P = 0.0002). In the Helsinki and Tampere regions, respectively, carrier frequencies of FANCM p.Q1701X were 2.9% and 4.0% of breast cancer patients, 5.6% and 6.6% of TNBC patients, 2.2% of ovarian cancer patients (from Helsinki), and 1.4% and 2.5% of controls. These findings identify FANCM as a breast cancer susceptibility gene, mutations in which confer a particularly strong predisposition for TNBC.breast cancer | DNA repair | FANCM | exome sequencing | triple-negative breast cancer B reast cancer is the most common cancer affecting women worldwide. It is also the principal cause of death from cancer among women globally, accounting for 14% of all cancer deaths (1). The etiology of breast cancer is multifactorial, and the risk depends on various factors like age, family history, and reproductive, hormonal, or dietary factors. The majority of breast cancers are sporadic, but approximately 15% of cases show familial aggregation (2, 3). Since the identification of the first breast and ovarian cancer susceptibility genes breast cancer 1 and 2 (BRCA1 and BRCA2, respectively) by linkage analysis and positional cloning, several breast cancer susceptibility genes and alleles with different levels of risk and prevalence in the population have been recognized. BRCA1 and BRCA2 mutation carriers have more than 10-fold increased risk of breast cancer compared with women in