Psychopathology can be viewed as a hierarchy of correlated dimensions. Many studies have supported this conceptualization, but they have used alternative statistical models with differing interpretations. In bifactor models, every symptom loads on both the general factor and one specific factor (e.g., internalizing), which partitions the total explained variance in each symptom between these orthogonal factors. In second-order models, symptoms load on one of several correlated lower-order factors. These lower-order factors load on a second-order general factor, which is defined by the variance shared by the lower-order factors. Thus, the factors in secondorder models are not orthogonal. Choosing between these valid statistical models depends on the hypothesis being tested. Because bifactor models define orthogonal phenotypes with distinct sources of variance, they are optimal for studies of shared and unique associations of the dimensions of psychopathology with external variables putatively relevant to etiology and mechanisms. Concerns have been raised, however, about the reliability of the orthogonal specific factors in bifactor models. We evaluated this concern using parent symptom ratings of 9-10 year olds in the ABCD Study. Psychometric indices indicated that all factors in both bifactor and second-order models exhibited at least adequate construct reliability and estimated replicability.The factors defined in bifactor and second-order models were highly to moderately correlated across models, but have different interpretations. All factors in both models demonstrated significant associations with external criterion variables of theoretical and clinical importance, but the interpretation of such associations in second-order models was ambiguous due to shared variance among factors.