A long‐standing debate in the field of numerical cognition concerns the degree to which symbolic and non‐symbolic processing are related over the course of development. Of particular interest is the possibility that this link depends on the range of quantities in question. Behavioral and neuroimaging research with adults suggests that symbolic and non‐symbolic quantities may be processed more similarly within, relative to outside of, the subitizing range. However, it remains unclear whether this unique link exists in young children at the outset of formal education. Further, no study has yet taken numerical size into account when investigating the longitudinal influence of these skills. To address these questions, we investigated the relation between symbolic and non‐symbolic processing inside versus outside the subitizing range, both cross‐sectionally and longitudinally, in 540 kindergarteners. Cross‐sectionally, we found a consistently stronger relation between symbolic and non‐symbolic number processing within versus outside the subitizing range at both the beginning and end of kindergarten. We also show evidence for a bidirectional relation over the course of kindergarten between formats within the subitizing range, and a unidirectional relation (symbolic → non‐symbolic) for quantities outside of the subitizing range. These findings extend current theories on symbolic and non‐symbolic magnitude development by suggesting that non‐symbolic processing may in fact play a role in the development of symbolic number abilities, but that this influence may be limited to quantities within the subitizing range.