18 metabolites was observed. Their structures were proposed on the basis of high-performance liquid chromatography-tandem mass spectrometry technologies, and 10 metabolites were confirmed by comparison with synthetic standards. We were surprised to find that a disproportionate human metabolite, BILR 516, was uncovered during this metabolite profiling study and pharmacokinetic analysis of BILR 516 showed that it had a longer half-life and higher exposure than the parent compound at steady state. Of interest, BILR 516 was not detected in human plasma when BILR 355 was administered alone. Therefore, whereas RTV boosted the exposure of BILR 355, it resulted in a significant metabolic switching of BILR 355. Overall, this article demonstrates an unusual example of metabolic switching and raises concern about the consequence of metabolic switching during drug development.