Post-transcriptional regulation of gene expression by RNA-binding proteins helps facilitate fast, clean transitions from one cell state to the next during germ cell differentiation. Previously we showed that the RNA helicase YTHDC2 is required for germ cells to properly switch from mitosis to meiosis (Bailey et al., 2017). While YTHDC2 protein is first expressed as male germ cells enter meiosis, when it is needed to shut down the mitotic program, YTHDC2 expression continues to increase and reaches its highest levels later in meiotic prophase, in pachytene spermatocytes. Here we show that YTHDC2 has an additional essential role regulating meiotic progression in late spermatocytes during mouse germ cell differentiation. Inducing conditional knockout ofYthdc2during the first wave of spermatogenesis, after the germ cells have already initiated meiotic prophase, allowedYthdc2-deficient germ cells to successfully reach the pachytene stage and properly express many meiotic markers. However, instead of continuing through meiotic prophase and initiating the meiotic divisions, late pachytene spermatocytes failed to transition to the diplotene stage and quickly died. Loss of function ofYthdc2in spermatocytes resulted in changes in transcript levels for a number of genes, some up-regulated and some down-regulated, compared to control mid-stage spermatocytes. YTHDC2 interacts with different proteins in early and late spermatocytes, with many of the interacting proteins involved in post-transcriptional RNA regulation and present in RNA granules, similar to YTHDC2. Our findings suggest that YTHDC2 facilitates proper progression of germ cells through multiple steps of meiosis, potentially via several mechanisms of post-transcriptional RNA regulation.