Alternative Polyadenylation (APA) is an emerging mechanism for dynamic changes in gene expression. Previously, we described widespread APA occurrence in introns during the DNA damage response (DDR). Here, we show that a DNA damage activated APA event occurs in the first intron of CDKN1A, inducing an alternate last exon (ALE)-containing lncRNA. We named this lncRNA SPUD (Selective Polyadenylation Upon Damage). SPUD localizes to polysomes in the cytoplasm and is detectable as multiple isoforms in available high throughput studies. SPUD has low abundance compared to the CDKN1A full-length isoform and is induced in cancer and normal cells under a variety of DNA damaging conditions in part through p53 transcriptional activation. RNA binding protein (RBP) HuR and the transcriptional repressor CTCF regulate SPUD levels. SPUD induction increases p21 protein, but not CDKN1A full-length levels, affecting p21 functions in cell-cycle, CDK2 expression, and cell viability. Like CDKN1A full-length isoform, SPUD can bind two competitive p21 translational regulators, the inhibitor calreticulin and the activator CUGBP1; SPUD can change their association with CDKN1A full-length in a DDR-dependent manner. Together, these results show a new regulatory mechanism by which a lncRNA controls p21 expression post-transcriptionally, highlighting lncRNA relevance in DDR progression and cell cycle.