Schistosoma mansoni is one of the three main causative agents of human schistosomiasis, a major health problem with a vast socio-economic impact. Recent advances in the proteomic analysis of schistosomes have revealed that peptidases are the main virulence factors involved in the pathogenesis of this disease. In this context, evolutionary studies can be applied to identify peptidase families that have been expanded in genomes over time in response to different selection pressures. Using a phylogenomic approach, we searched for expanded endopeptidase families in the S. mansoni predicted proteome with the aim of contributing to the knowledge of such enzymes as potential therapeutic targets. We found three endopeptidase families that comprise leishmanolysins (metallopeptidase M8 family), cercarial elastases (serine peptidase S1 family) and cathepsin D proteins (aspartic peptidase A1 family). Our results suggest that the Schistosoma members of these families originated from successive gene duplication events in the parasite lineage after its diversification from other metazoans. Overall, critical residues are conserved among the duplicated genes/proteins. Furthermore, each protein family displays a distinct evolutionary history. Altogether, this work provides an evolutionary view of three S. mansoni peptidase families, which allows for a deeper understanding of the genomic complexity and lineage-specific adaptations potentially related to the parasitic lifestyle.Key words: phylogenomics -maximum likelihood analysis -homology predictionfunctional annotation -proteases -paralogous families -parasite genomics S. mansoni peptidase families • Larissa Lopes Silva et al.
865et al. 2010). In general, cysteine peptidases have cysteine and histidine residues forming their "catalytic dyad". Meanwhile, other active site residues have been found. Glutamic peptidases have glutamic acid residues as their primary catalytic residues, which are probably the nucleophilic attack mediators involved in the catalysis (Fujinaga et al. 2004, Rawlings et al. 2010. In metallopeptidases, the catalytic mechanism usually involves a single catalytic zinc ion tetrahedrally coordinated by one glutamate and two histidine residues (Rawlings et al. 2010). Serine peptidases have serine residues at their active sites, which together with two other variable amino acids constitute the "catalytic triad" (Hedstrom 2002, Rawlings et al. 2010. Threonine peptidases have threonine residues as their nucleophiles during catalysis. For unknown peptidases, the active site residues have not yet been determined. Evolutionary analyses have been applied to a broad range of studies, which include the identification of gene/protein families that have expanded in a specific lineage over evolutionary time and possibly indicate the existence of selective pressure (Irving et al. 2003, Sargeant et al. 2006, Nahum & Pereira 2008, Robinson et al. 2008, Wu et al. 2009, Huzurbazar et al. 2010. The availability of faster and more powerful computers combined with the development of...