RNA therapeutics have undergone remarkable evolution since their inception in the late 1970s, revolutionizing medicine by offering new possibilities for treating previously intractable diseases. The field encompasses various modalities, including antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs), each with unique mechanisms and applications. The foundation was laid in 1978 with the discovery that synthetic oligonucleotides could inhibit viral replication, followed by pivotal developments such as RNA interference’s discovery in 1998. The COVID-19 pandemic marked a crucial turning point, demonstrating the potential of mRNA vaccines and accelerating interest in RNA-based approaches. However, significant challenges remain, including stability issues, delivery to target tissues, potential off-target effects, and immunogenicity concerns. Recent advancements in chemical modifications, delivery systems, and the integration of AI technologies are addressing these challenges. The field has seen notable successes, such as approved treatments for spinal muscular atrophy and hereditary transthyretin-mediated amyloidosis. Looking ahead, RNA therapeutics show promise for personalized medicine approaches, particularly in treating genetic disorders and cancer. The continued evolution of this field, driven by technological innovations and deeper understanding of RNA biology, suggests a transformative impact on future medical treatments. The purpose of this review is to provide a comprehensive overview of the evolution, current state, and prospects of RNA therapeutics.