RNA molecules play active roles in the cell and are important for numerous applications in biotechnology and medicine. The function of an RNA molecule stems from its structure. RNA structure determination is time consuming, challenging, and expensive using experimental methods. Thus, much research has been directed at RNA structure prediction through computational means. Many of these methods focus primarily on the secondary structure of the molecule, ignoring the possibility of pseudoknotted structures. However, pseudoknots are known to play functional roles in many RNA molecules or in their method of interaction with other molecules. Improving the accuracy and efficiency of computational methods that predict pseudoknots is an ongoing challenge for single RNA molecules, RNA-RNA interactions, and RNA-protein interactions. To improve the accuracy of prediction, many methods focus on specific applications while restricting the length and the class of the pseudoknotted structures they can identify. In recent years, computational methods for structure prediction have begun to catch up with the impressive developments seen in biotechnology. Here, we provide a non-comprehensive overview of available pseudoknot prediction methods and their best-use cases.