Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this chapter we discuss the various enzymes that control transcription, translation and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5′ and 3′ termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript, are matured to individual 16S, 23S and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and non-translated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase as well as proteins that regulate the catalytic activity of particular ribonucleases. Under certain stress conditions an additional group of specialized endonucleases facilitate the cell’s ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I participate in multiple RNA processing and decay pathways.