Eleventh International Conference on Machine Vision (ICMV 2018) 2019
DOI: 10.1117/12.2523155
|View full text |Cite
|
Sign up to set email alerts
|

Road sign detection and localization based on camera and lidar data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
8
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
3
2
2

Relationship

1
6

Authors

Journals

citations
Cited by 8 publications
(10 citation statements)
references
References 6 publications
1
8
0
1
Order By: Relevance
“…Velodyne's VLP-16 sensor is the smallest advanced sensor in Velodyne's 3D LiDAR product range. Buyval et al [62] proposed a method on board an autonomous vehicle for road sign detection and localization using the VLP-16 sensor. The researchers used this twenty-fourth platform reviewed to implement their algorithm for road sign s classification and localization in a 3D space.…”
Section: Mobile Data Acquisition Systemsmentioning
confidence: 99%
See 1 more Smart Citation
“…Velodyne's VLP-16 sensor is the smallest advanced sensor in Velodyne's 3D LiDAR product range. Buyval et al [62] proposed a method on board an autonomous vehicle for road sign detection and localization using the VLP-16 sensor. The researchers used this twenty-fourth platform reviewed to implement their algorithm for road sign s classification and localization in a 3D space.…”
Section: Mobile Data Acquisition Systemsmentioning
confidence: 99%
“…In this sense, semantic detection has simplified the traffic sign detection task. 3D information is reprojected onto 2D images, and D-ANNs are used for sign classification, as discussed in [47], [39], [61], [62], [86]- [88]. These systems use CNNs hierarchically organized based on supervised learning and contain several specialized hidden layers.…”
mentioning
confidence: 99%
“…A dataset was collected to achieve this goal and train the neural network (built on the Faster-R-CNN architecture). The device generates a series of images with bounding boxes and points clouds related to actual road signs [14]. The first section of a method for detecting and classifying road signs identifies the road signs on a real-time basis.…”
Section: Related Workmentioning
confidence: 99%
“…Использование камер является более традиционным методом, который имитирует зрение водителя. В области компьютерного зрения распознавание объектов является одной из основных задач, для решения которой используют как стандартные алгоритмы компьютерного зрения [4], так и использования различных архитектур нейронных систем [1]. Метод, описанный в данной статье, основан на использовании полносверточной нейронной сети [6], выполняющей задачу сегментации изображения.…”
Section: Introductionunclassified