2022
DOI: 10.5194/isprs-archives-xlvi-m-2-2022-135-2022
|View full text |Cite
|
Sign up to set email alerts
|

Roadside Forest Modeling Using Dashcam Videos and Convolutional Neural Nets

Abstract: Abstract. Tree failure is a primary cause of storm-related power outages throughout the United States. Roadside vegetation management is therefore critical to electric utility companies to prevent power outages during extreme weather conditions. It is difficult to execute roadside vegetation management practices, at the landscape level, without proper monitoring of roadside forests’ physical structure and health condition. Remote sensing images and LiDAR are widely used to characterize the forest edge; however… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?