Hihatsumodoki (Piper retrofractum Vahl) is a traditional spice from Okinawa (Japan) that can be processed in different ways to create the desired flavor. Herein, we examined the effects of processing (sun-drying, oven-drying, roasting, and steaming) on the volatile aroma constituents of hihatsumodoki fruits. Among the 106 chromatographic peaks observed in total, 58 were assigned to known aroma compounds. The relative contents of terpenes, for example, linalool, β-caryophyllene, α-caryophyllene, and germacrene D, ranged from 57.6% to 88.1%. Sun-drying decreased the content of aldehydes such as hexanal and trans-2-hexenal but did not significantly affect the total content of aroma compounds. The amount of aroma compounds released during oven-drying and roasting increased with temperature up to a certain point (90 • C) and decreased at an excessively high temperature of 180 • C. High-temperature roasting generated Maillard reaction products such as furans and furanones, which could impart sweet caramel odors. Steamed fruits had the lowest content of aroma compounds, which was ascribed to the loss of these compounds to vapor. Meanwhile, drying steamed fruits resulted in an approximately 3.6-fold increase in their aroma compound content, and the content of sesquiterpenes in the steameddried fruits was similar to that in fruits exposed to high temperatures. The effects of processing on aroma quality were visualized using multivariate statistical analysis. The aroma characteristics of roasted (180 • C), steamed, and steamed-dried fruits were different from those of the control. The combined findings provide useful information for the selection of processing methods to achieve the desired flavor of hihatsumodoki. Practical Application: This study reveals the effects of different processing methods on the aroma profile of hihatsumodoki (Piper retrofractum Vahl), a subtropical spice from Okinawa (Japan). The results facilitate the selection of preferred hihatsumodoki flavors for household and industrial applications in foods and beverages. In addition, they inspire research on the processing-induced flavor changes of other tropical or subtropical spices.