2020
DOI: 10.9734/arjom/2020/v16i730210
|View full text |Cite
|
Sign up to set email alerts
|

Robertson – Walker Metric in (2 + 1) – Dimensions: The 2 – D Coordinate Subspaces and Their Curvature

Abstract: In this paper, we will first construct a Robertson – Walker like metric in (2 + 1) – dimensional space. The easiest way of doing this is to consider a 2-dimensional coordinate space as a space embedded in a 3-dimensional hypersurface. The curvature of each surface is determined using the spatial part of the Robertson – Walker like metric constructed. Our main goal is to find out if the Robertson – Walker like metric in (2 + 1) – dimensional space can be used as a prototype model to study Robertson – Walker in … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?