The increase in the role of companion robots in everyday life is inevitable, and their safe communication with the infrastructure is one of the fundamental challenges faced by designers. There are many challenges in the robot’s communication with the environment, widely described in the literature on the subject. The threats that scientists believe have the most significant impact on the robot’s communication include denial-of-service (DoS) attacks, satellite signal spoofing, external eavesdropping, spamming, broadcast tampering, and man-in-the-middle attacks. In this article, the authors attempted to identify communication threats in the new robot-to-infrastructure (R2I) model based on available solutions used in transport, e.g., vehicle-to-infrastructure (V2I), taking into account the threats already known affecting the robot’s sensory systems. For this purpose, all threats that may occur in the robot’s communication with the environment were analyzed. Then the risk analysis was carried out, determining, in turn, the likelihood of potential threats occurrence, their consequence, and ability of detection. Finally, specific methods of responding to the occurring threats are proposed, taking into account cybersecurity aspects. A critical new approach is the proposal to use communication and protocols so far dedicated to transport (IEEE 802.11p WAVE, dedicated short-range communications (DSRC)). Then, the companion’s robot should be treated as a pedestrian and some of its sensors as an active smartphone.