Given this new context, our objective is to recognize the suitability of the currently available software for image fusion and the reported series using the transperineal route, as well as to generate new evidence on the complementarity of the directed and systematic biopsies, which has been established through the transrectal approach. Evidence acquisition: This systematic review, registered in Prospero (CRD42022375619), began with a bibliographic search that was carried out in PubMed, Cochrane, and Google Scholar databases. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) criteria and the studied eligibility based on the Participants, Intervention, Comparator, and Outcomes (PICO) strategy were followed. Warp analysis of selected studies was performed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. In addition, a Google search of all currently available fusion platforms was performed. Our Google search found 11 different commercially available robots to perform transperineal image fusion biopsies, of which 10 devices have published articles supporting their diagnostic effectiveness in transperineal prostate biopsies. Results: A total of 30 articles were selected and the characteristics and results of the biopsies of 11,313 patients were analyzed. The pooled mean age was 66.5 years (63–69). The mean pooled PSA level was 7.8 ng/mL (5.7–10.8). The mean pooled prostate volume was 45.4 cc. (34–56). The mean pooled PSA density was 0.17 (0.12–0.27). The overall cancer detection rate for all prostate cancers was 61.4%, while for csPCa it was 47.8%. PCa detection rate was more effective than that demonstrated in the systematic transrectal biopsy. However, the detection of csPCa in the systematic biopsy was only 9.5% in the reported series. To standardize our review, we grouped prostate cancer screening results according to the population studied and the software used. When the same populations were compared between elastic and rigid software, we found that rigid biopsies had a higher csPCa detection rate than biopsies with elastic fusion systems. Conclusion: Platforms performing prostate biopsy using transperineal image fusion have better detection rates of csPCa than systematic transrectal biopsies. Rigid fusion systems have a better csPCa detection rate than elastic ones. We found no diagnostic differences between the different types of robotic systems currently available. The complementarity of systematic biopsy has also been demonstrated in transperineal imaging fusion biopsies.