OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 18858The contribution was presented at ICAART 2017 :http://www.icaart.org/?y=2017 Sensors and actuators are progressively invading our everyday life, as well as industrial processes. They form complex and pervasive systems usually called "ambient systems" or "cyber-physical systems". These systems are supposed to efficiently perform various and dynamic tasks in an ever-changing environment. They need to be able to learn and to self-adapt throughout their life, because designers cannot specify a priori all the interactions and situations they will face. These are strong requirements that push the need for lifelong machine learning, where devices can learn models and behaviors and transfer them to perform other tasks. This article presents a multi-agent approach for lifelong machine learning.