2023
DOI: 10.1007/s10514-023-10101-z
|View full text |Cite
|
Sign up to set email alerts
|

Robotic hand synergies for in-hand regrasping driven by object information

Abstract: We develop a conditional generative model to represent dexterous grasp postures of a robotic hand and use it to generate in-hand regrasp trajectories. Our model learns to encode the robotic grasp postures into a low-dimensional space, called Synergy Space, while taking into account additional information about the object such as its size and its shape category. We then generate regrasp trajectories through linear interpolation in this low-dimensional space. The result is that the hand configuration moves from … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
0
0
0
Order By: Relevance