Strawberry fruits are products of high commercial and consumption value, and, at the same time, they are difficult to harvest due to their very low mechanical strength and difficulties in identifying them within the bush. Therefore, robots collecting strawberries should be equipped with four subsystems: a video object detection system, a collecting arm, a unit for the reception and possible packaging of the fruit, and a traction system unit. This paper presents a concept for the design and operation of the working section of a harvester for strawberry fruit crops grown in rows or beds, in open fields, and/or under cover. In principle, the working section of the combine should meet parameters comparable with those of manually harvested strawberries (efficiency, quality of harvested fruit) and minimise contamination in the harvested product. In order to meet these requirements, in the presented design concept, it was assumed that these activities would be performed during harvesting with the natural distribution of fruits within the strawberry bush, and the operation of the working head arm maneuvering in the vicinity of the picked fruit, the fruit receiving unit, and other obstacles was developed on the basis of image analysis, initially general, and in detail in the final phase. The paper also discusses the idea of a vision system in which the algorithm used has been positively tested to identify the shapes of objects, and due to the similarity of space, it can be successfully used for the correct location of strawberry fruit.